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Abstract

The behavior and failure of brittle materials is significantly influenced by the existence of inhomogeneities such

as pores and cracks. The proposed constitutive equations model the coupled micro-mechanical response of these in-

homogeneities through evolution equations for scalar measures of porosity, and a ‘‘density’’ function of randomly

oriented penny-shaped cracks. A specific form for the Helmholtz free energy is proposed which incorporates the known

Mie–Gr€uuneisen constitutive equation for the nonporous solid. The resulting thermomechanical constitutive equations
are valid for large deformations and the elastic response is hyperelastic in the sense that the stress is related to a de-

rivative of the Helmholtz free energy. These equations allow for the simulation of the following physical phenomena

exhibited by brittle materials: (1) high compressive strength compared with much lower tensile strength; (2) inelastic

deformation due to growth and nucleation of cracks and pores instead of due to dislocation dynamics associated with

metal plasticity; and (3) loss of integrity (degradation of elastic moduli) due to damage accumulation. The main features

of the model are demonstrated by examples of cyclic loading in homogeneous deformation and by a simulation of a

dynamic plate-impact experiment on AD85 ceramic. The theoretical predictions of the model are in excellent agreement

with the dynamic experimental data.
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1. Introduction

A major cause for the failure of ceramics is brittleness due to the existence of micro-structural cavities

such as pores and cracks. These cavities usually appear in many shapes, and in sizes that range from crystal
size (nuclei boundaries) up to tens of microns. Since the number and type of these cavities in a real material is

so large, it is impossible to analyze the evolution of each one individually. Consequently, it is necessary to use
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Nomenclature

�aa average radius of a penny-shaped crack in the present configuration
�aa0 average radius of a penny-shaped crack in the reference configuration

a radius of a penny-shaped crack in the present configuration

A material constant that controls the decrease in the yield stress due to pore collapse

A1C history-dependent function that depends on stress (open cracks)

A2C history-dependent function that depends on stress (closed cracks)
~AA symmetric tensor that characterizes the relaxation effects of plasticity on the evolution of

elastic distortional deformation
B material constant in the exponent of the function that decreases the yield stress due to pore

collapse

bts a function that controls the deviation of porosity during dilation from the porosity associated

with zero pressure, when the crack damage effect is included

bt0 material constant controlling the deviation of porosity during dilation from the porosity as-

sociated with zero pressure when no crack damage is included

B0
e elastic distortional deformation tensor

Cv specific heat of the solid
C1, C2, C3 material constants controlling porosity rate
CR Rayleigh wave speed of the material

dv element of total volume in the present configuration

dvp element of pore volume in the present configuration

dvs element of solid volume in the present configuration

dV element of total volume in the reference configuration

dVp element of pore volume in the reference configuration

dVs element of solid volume in the reference configuration
DC a generalized measure of crack damage

Du uniaxial deformation rate

D rate of deformation tensor, symmetric part of L

ei rectangular Cartesian base vectors

Ezz total Lagrangian axial strain

f function that controls compaction rate

f1, f2 functions defining the Helmholtz free energy

f3 function that controls compaction rate
fC material parameter that characterizes the friction coefficient between crack surfaces

F ¼ ox=oX the total deformation gradient

FsðhÞ the value of the relative volume of the solid associated with zero pressure

g yield function

g temperature gradient

Gi instantaneous strain energy release rate

GC critical strain energy release rate

GI strain energy release rate due to MODE I
GII strain energy release rate due to MODE II

GSTATIC acting strain energy release rate
HðxÞ Heavyside function

I second order unity tensor
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I a variable that describes material integrity

J total relative volume
Ju total relative volume in the unloaded state

Js relative volume of the solid

KIC static fracture toughness

L velocity gradient

n number of cracks per unit reference volume

n̂nb evolution function for the nucleation of cracks due to the branching phenomenon

n̂nC evolution function for the nucleation of cracks due to pore crushing

n a unit vector perpendicular to crack plane
n number of cracks per unit volume in the present configuration

n0 number of cracks per unit volume in the reference configuration

p total pressure

pcs pressure in the fractured solid

ps pressure in the intact solid

ps1 part of the pressure in the solid associated with dilatation and temperature

p0s part of the pressure in the solid mainly due to elastic distortional deformation

psH pressure on the Hugoniot
pcrush value of the pressure at the onset of porous compaction

pd function controlling the magnitude of the pressure during porous dilation

p entropy flux vector per unit present area

q external rate of heat flux per unit present area

r specific external rate of heat supply

s specific external rate of supply of entropy

S1, S2, S3 material constants that specify the shock velocity versus particle velocity curve
t time
T Cauchy stress tensor

Tij Cauchy stress tensor�s components
T0 deviatoric part of the Cauchy stress

T0
s deviatoric part of the Cauchy stress in the solid

Us shock-wave velocity

v velocity of a material point

x position vector of a material point in the present configuration

X position vector of a material point in the reference configuration
Y yield strength in uniaxial stress

Y0 reference value of the yield strength

hxi Macauley brackets

a1 invariant of elastic distortional deformation

cs Gr€uuneisen gamma for the solid in the present configuration
c0 Gr€uuneisen gamma for the solid in the reference configuration
C function controlling the magnitude of elastic distortional deformation

e specific internal energy
es1 part of the specific internal energy of the solid associated with dilatation and temperature

e0s part of the specific internal energy of the solid mainly due to elastic distortional deformation

esH specific internal energy on the Hugoniot

l̂ls shear modulus function
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l0 shear modulus of the intact solid in the reference configuration

g specific entropy
gs specific entropy of the solid

gcs specific entropy of the fractured solid

gs1 specific entropy of the solid associated with dilatation and temperature

g0
s specific entropy of the solid mainly due to elastic distortional deformation

a, b spherical polar angles

h absolute temperature

h0 value of the absolute temperature h in the reference configuration
m Poisson�s ratio
n specific internal rate of production of entropy

n0 specific internal rate of entropy production due to material dissipation

n0
d specific internal rate of entropy production due to inelastic distortional deformation

n0
/ specific internal rate of entropy production due to porosity changes

n0
C specific internal rate of entropy production due to crack damage

n1, n2 auxiliary variables

j1, j2 dimensionless material parameters controlling crack growth rates

j3, j4, j5 dimensionless material parameters controlling crack nucleation rates
q mass per unit present total volume

q0 mass per unit reference total volume

qs mass of the solid per unit present solid volume

qs0 mass of the solid per unit reference solid volume
re Von Mises effective stress

rN the normal stress acting on a crack�s plane
rT the tangential stress acting on a crack�s plane
U porosity in the reference configuration

/ porosity in the present configuration

/s dilation porosity function

/u unloaded porosity in the present configuration

/0u unloaded porosity in the reference configuration
/minu minimum value of unloaded porosity attained during loading

w specific Helmholtz free energy

wC specific surface energy due to the formation of cracks

ws specific Helmholtz free energy of the solid

fC specific crack ‘‘density’’, a measure for crack damage
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some averaging procedure or simplifying modeling assumptions to predict the response of macroscopic
structures.

During the last 50 years there has been considerable success using linear elastic fracture mechanics to

characterize the effective properties of materials containing idealized flaws. Kachanov et al. (1994) sum-

marize much of this work and present expressions for effective moduli of materials with many interacting

cavities.

An alternative approach is to use notions of continuum damage mechanics (Krajcinovic, 1996) which

generalize the early work of Kachanov (1958) for rupture under creep conditions. In this approach, it is

common to introduce damage parameters (scalars or tensors) which characterize the reduction in elastic



E. Bar-on et al. / International Journal of Solids and Structures 40 (2003) 4519–4548 4523
moduli and which are determined by integrating phenomenological evolution equations. Within this

context, an attempt is made to predict the evolution of the damaged state.

The objective of this paper is to develop thermomechanical constitutive equations, which model the

response of ceramics to dynamic shock loading. Due to the nonlinear-coupled thermomechanical nature of
shock loading it is essential to model measurable Hugoniot data. Also, due to the micro-cracking that

occurs in ceramics it is desirable to incorporate known results of fracture mechanics into the constitutive

equations. This paper attempts to blend phenomenological modeling in macroscopic nonlinear continuum

mechanics with known results of fracture mechanics to motivate more micro-mechanically based pheno-

menological evolution equations for various internal state variables that characterize the failure process.

To this end, the concept of a representative volume element (RVE) is used; Hill (1963), Hashin (1964,

1983), Kr€ooner (1977), Willis (1981), and Nemat-Nasser (1986). As stated by Nemat-Nasser and Hori (1993,
p. 11), ‘‘An RVE for a material point of a continuum mass is a material volume which is statistically
representative of the infinitesimal material neighborhood of that material point. The continuum material

point is called a macro-element. The corresponding micro-constituents of the RVE are called the micro-

elements. An RVE must include a very large number of micro-elements, and be statistically representative

of the local continuum properties’’. More specifically, the material is considered to be a composite material

composed of a solid matrix and cavities. The cavities are modeled by uniformly distributed spherical pores

and penny-shaped cracks, with the cracks being randomly oriented.

Kachanov (1994) has commented on difficulties combining fracture mechanics and phenomenological

continuum damage mechanics. One such difficulty (pointed out by Ju, 1990) occurs when a single damage
parameter is used to reduce the strain energy function. This assumption causes Poisson�s ratio to remain
unaffected by damage, which is inconsistent with results from fracture mechanics. Within the present con-

text, the effects of damage evolution on the dilatational response and on the distortional response (deviatoric

stress) are modeled independently. Moreover, since the constitutive equations are hyperelatic (with the stress

being determined by a derivative of the Helmholtz free energy) and since damage depends on the stress state

due to friction on the crack faces, special care must be taken to ensure that the second law of thermody-

namics is properly satisfied. This is accomplished by introducing four history-dependent variables: the

unloaded porosity /u (related to the current porosity /, Eq. (45)) to model the dilatational response; the
average crack radius �aa (Eq. (19a)), the number of cracks per unit reference volume n (Eq. (22)), and a damage
parameter DC (Eq. (29)) associated with cracking, which modifies the shear modulus. All four variables are
determined by integrating time-dependent evolution equations. Also, the evolution equation for DC incor-
porates friction and depends on an integral over all possible fracture orientations. Moreover, these evolution

equations are based on a Maxwell–Boltzmann distribution function for crack lengths.

The resulting constitutive equations incorporate the Mie–Gr€uuneisen equation of state for the nonporous
solid and they allow for the simulation of the following physical phenomena exhibited by brittle materials:

1. High compressive strength compared with much lower tensile strength.

2. Inelastic deformation due to growth and nucleation of cracks and pores instead of due to dislocation

dynamics associated with metal plasticity.

3. Loss of integrity (degradation of elastic moduli) due to damage accumulation.

These model features were examined using a computer code which determines the material response of

a single RVE to specified homogeneous deformations. Also, the model was implemented into a two-

dimensional axi-symmetric Lagrangian shock-wave code, and a simulation of a plate-impact experiment on
AD-85 ceramic was performed. The resulting theoretical predictions of the model are in excellent agreement

with the dynamic experimental data.

The structure of this paper is as follows: Section 2 briefly describes the thermomechanical equations used

to develop the constitutive model. Section 3 motivates the functional forms of the phenomenological
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evolution equations for fracture, based on micro-mechanical equations for penny-shaped cracks. Section 4

discusses the equations for porous compaction and dilation, Section 5 presents the constitutive equations

for the intact matrix and Section 6 presents the constitutive equations for the cracked, porous material.

Section 7 presents a number of examples to examine the range of material response predicted by the model.
In particular, it is shown that the model can produce excellent agreement with dynamic plate-impact

experiments. Also, Section 7 includes simulations which exhibit the sensitivities to various model para-

meters which can be used to help determine the values of these constants that best simulate a specific

experiment. Finally, Section 8 presents a brief summary of the results.
2. Thermomechanical background

Let X denote the location of a material point in the fixed-reference configuration and x denote the

location of the same material point in the deformed present configuration at time t. Also, let F ¼ ox=oX
be the deformation gradient and C ¼ FTF be the right Cauchy–Green total deformation tensor. Following

the thermodynamic procedures proposed by Green and Naghdi (1977, 1978), the local form of the balance

of entropy can be written as
q _gg ¼ qðsþ nÞ � div p; ð1Þ

where q is the density (mass per unit volume), g is the specific (per unit mass) entropy, s is the specific
external rate of supply of entropy, n is the specific rate of internal production of entropy, and p is the

entropy flux vector per unit present area. A superposed dot denotes material time differentiation holding X

fixed, and div denotes the divergence operator with respect to the present position x. Furthermore, the

quantities s and p are related to the specific rate of heat supply r and the heat flux q per unit present area
(appearing in the balance of energy) by the expressions
s ¼ r
h
; p ¼ q

h
: ð2a; bÞ
In general, n can be separated into two parts (Rubin, 1992)
qhn ¼ �p 	 gþ qhn0; ð3Þ

where g ¼ oh=ox is the temperature gradient with respect to the present configuration, and p 	 g denotes the
usual scalar product between two vectors. Thus, Eqs. (1)–(3) can be used to obtain
qr � div q ¼ qh _gg � qhn0: ð4Þ

Also, it is recalled that with the help of the conservation of mass and the balance of linear momentum, the
balance of energy can be written in the form
q _ee ¼ qr � div qþ T 	D: ð5Þ

In this equation, e is the specific internal energy, T is the Cauchy stress, D is the symmetric part of the

velocity gradient L, such that
v ¼ _xx; L ¼ ov=ox; D ¼ 1
2
ðLþ LTÞ; ð6Þ
where A 	 B ¼ trðABTÞ is the inner product between two second order tensors A and B, and the balance

of angular momentum has been used to impose the restriction that T is symmetric.

In their work, Green and Naghdi (1977, 1978) developed restrictions on constitutive equations by

requiring the balances of angular momentum and energy to be satisfied for all thermomechanical processes.
Specifically, by using (4) and the definition
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w ¼ e � hg; ð7Þ
for the specific Helmholtz free energy (HFE), the balance of energy (5) can be rewritten in the reduced form
qð _ww þ g _hhÞ � T 	Dþ qhn0 ¼ 0: ð8Þ
Furthermore, these constitutive equations are required to satisfy statements of the second law of

thermodynamics, which include the condition that heat flows from hot to cold
�p 	 g > 0 for g 6¼ 0 ð9Þ
and the condition that the material dissipation is nonnegative (Rubin, 1992)
qhn0 P 0: ð10Þ
3. Fracture mechanics

It is assumed that the brittle material is a homogenized continuum with a sufficient number of penny-

shaped cracks that they can be dealt with statistically. More specifically, the cracks are distributed

homogeneously and randomly so that the crack size distribution function is independent of the specific

locations or orientations of the cracks. One such distribution has been described in detail by Bar-on and

Yankelevsky (1993) and is called the Maxwell–Boltzmann distribution function for crack lengths
waðn; �aa; aÞ ¼
32na2

p2�aa3
exp

"
� 4

p
a
�aa

� �2#
; ð11aÞ
where
n ¼
Z 1

0

waðn; �aa; aÞda and �aa ¼ 1
n

Z 1

0

waðn; �aa; aÞada; ð11b; cÞ
are the number of cracks per unit reference volume, and the average crack radius, respectively, and a is the
crack radius. The parameters n and �aa are calculated by integrating evolution equations that will be derived
in the following sections.

This distribution function is used to determine the integrated influence of all cracks in the RVE on the

material response to any arbitrary loading. In this model, it is assumed that this distribution function is

valid even when n and �aa change. Also, since the cracks are assumed to have random orientations, mutual
effects cancel (Kachanov, 1992), so crack interactions are ignored.

3.1. Criterion for crack growth and nucleation

In fracture mechanics the strain energy release rate G (rate here refers to crack extension and not to
‘‘time’’), or alternatively, the crack driving force, was introduced by Griffith (1924), such that
G ¼ d

da
ðW � UÞ; ð12Þ
where W is the strain energy in the body due to external work, and U is the surface energy due to crack

generation.

The value of G at any instant is denoted by Gi and its critical value, associated with crack extension,
is denoted GC
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GC ¼ K2ICð1� mÞ
2l0

; ð13Þ
where the fracture toughness KIC is a temperature-dependent material parameter, taken in this work to be
constant, l0 is the shear modulus in the reference configuration and m is the reference value of Poisson�s ratio.
Expressions for the instantaneous energy release-rate for MODE I and for MODE II, have been pro-

posed by Keer (1966) and Rice (1984), respectively. These papers deal with a single crack under static or

quasi-static loading, whereas, in this work the instantaneous energy release rate associated with dynamic
response is computed in a RVE subjected to the current stress-state at each time-step. In addition, here the

contribution of all cracks in the element is determined using the crack distribution function.

To this end, it is convenient to introduce the normal stress rN and shear stress rT applied to the crack�s
surface
rN ¼ n 	 Tn; rT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jTnj2 � r2N

q
; ð14a; bÞ
where n is a unit vector normal to this surface.

For the case of a single crack loaded statically, the energy release rate Gi is computed by the following
expressions:

1. For a tensile stress rN P 0 acting normal to the crack�s surface, the value of G is given by (Eq. (27) in
Keer (1966))
GI ¼
2ð1� mÞ

pl0
a r2N

�
þ 2

2� m
r2T

	
: ð15aÞ
2. For a compressive stress rN < 0 acting normal to the crack�s surface, the value of G is given by (Eq. (9)
in Rice (1984))
GII ¼
4ð1� mÞ

pl0ð2� mÞ ahrT þ fCrNi2; ð15bÞ
where fC is a material parameter characterizing the friction coefficient between the crack�s surfaces, and
the Macauley brackets are defined by
hxi ¼ 1
2
ðjxj þ xÞ: ð16Þ
Using these expressions, the instantaneous energy release rate Gi in the RVE is calculated by weighting
the static value with the crack density distribution function waðn; �aa; aÞ, such that
Gi ¼
1

2pn

Z 2p

0

Z p=2

0

Z 1

0

waðn; �aa; aÞGSTATIC da sin adadb; ð17Þ
where a and b are spherical polar angles and
GSTATIC ¼ GI for rN P 0
GII for rN < 0


 �
: ð18Þ
3.2. Crack growth and nucleation

3.2.1. Crack growth

The expression for crack growth used here is a modification of the expression given by Rajendran et al.

(1989, 1990). Specifically, the evolution law for the average crack length �aa, is determined by a strain energy
release rate criterion of the form of
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_�aa�aa ¼ j1CR 1

�
� GC

Gi

� �j2

; CR ¼ 0:862þ 1:14m

1þ m

ffiffiffi
l
q

r
; ð19a; bÞ
where CR is the Rayleigh wave speed (Eq. (5.100) in Achenbach (1973)) and j1, j2 are dimensionless
material parameters that are determined by calibrating simulations of impact experiments. Notice that the

crack length will not increase until the Griffith criterion ½Gi > GC� is satisfied. Moreover, the shear stress rT
influences the response for both tensile and compressive normal stresses. Also, note that since the shear

modulus l (see Eq. (88)) and the density q depend on the state of the material, the value of the Rayleigh
wave speed is pressure dependent.

3.2.2. Crack nucleation

New cracks are presumed to be in a range of sizes with the same size distribution given by Eq. (11a).

According to the proposed model there are two reasons for crack nucleation:

1. Crack branching.

2. Generation due to pore crushing.

At present it is not known whether the limiting crack growth speed is the cause for crack branching or

whether crack branching is the cause for the limiting crack growth speed. For either case, the following

physical reasoning seems to be applicable. As loads are applied, the magnitude of the crack�s driving force
(energy release rate Gi) rises. When a critical value GC is exceeded, the crack starts to grow at the rate
controlled by Eq. (19a). As the limiting speed is approached and more energy is applied (because of external

loads) it is no longer possible to dissipate this energy by growing a single crack and crack branching (i.e.

nucleation) occurs. Here, n̂nb is a function that characterizes the ‘‘generation/nucleation’’ of new cracks due
to the branching process
n̂nb ¼ j3n
hGi � GCi

GC
CR: ð20Þ
Another source for new cracks is due to the crushing of pores during compressive loading. When the

pressure rises above a threshold pressure pcrush, pores start to crush, creating new cracks at the pore�s surface
that penetrate into the solid (this is in contrast with the behavior of pores in a ductile material, where the

pore volume is assumed to decrease with no cracking). The rate of crack generation due to pore crushing

is given by
n̂nC ¼ j4/ 1

�
� exp

�
� hp � pcrushi

pcrush

� �j5		
CR: ð21Þ
In these formulae, j3, j4 have units of m�1 and j5 is unitless. These material parameters are determined by
comparing model results with experimental data.

Moreover, combining these expressions, an evolution equation for the number of cracks is proposed

which depends on the rate of branching n̂nb and on the rate of pore crushing n̂nC, such that
_nn ¼ n̂nb þ n̂nC: ð22Þ
3.3. Integrity

The notions of failure and damage should not be confused. Failure means the inability of the material to

sustain stress, or the inability of the whole structure to sustain load, whereas damage might describe the

fraction of flawed volume in the RVE. To emphasize the difference between these concepts, it is clear that
the RVE is going to fail a long time before it is completely damaged.
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The usual models of damage assume that the material moduli monotonically decrease with increasing

damage. However, it is known from experience that when a material is compacted (closure/collapse of

pores) these moduli tend to become larger than their unloaded values. Consequently, a general model is

needed to describe this modulus enhancement. For this reason, it is convenient to introduce the integrity (I)
of the material in the RVE as
I ¼ ModulusðtÞ
Reference solid modulus

: ð23Þ
In theoretical models for moduli degradation (e.g. Budiansky and O�Connell, 1976; Horii and Nemat-
Nasser, 1983; Margolin, 1983), the effective moduli are determined through an equation which defines the

effective strain tensor as the sum of the elastic strain and the strain due to crack formation. The result of this
equation is a general expression for the moduli degradation due to cracks in the material of the form
ModulusðtÞ
Reference solid modulus

¼ 1

1þ RðmÞfC
; fC ¼ n�aa3; ð24a; bÞ
where RðmÞ is an expression that depends on the specific degraded modulus, and fC is the crack ‘‘density’’.
An expression for a mixture of spherical cavities and randomly oriented penny-shaped cracks is found in

Kachanov (1993) and Kachanov et al. (1994), which suggests that the integrity takes the form
ModulusðtÞ
Reference solid modulus

¼ 1� /
1� / þ c0/ þ c1fC

; ð25Þ
where / is the porosity (see Eq. (40a)), and c0 and c1 are constants. As a special case when c0 ¼ 1, this
expression yields
ModulusðtÞ
Reference solid modulus

¼ 1� /
1þ c1fC

: ð26Þ
Obviously, when the porosity vanishes ð/ ¼ 0Þ and c1 ¼ RðmÞ, the expression for the integrity (26) reduces
to Eq. (24a).

The objective of this section is to generalize Eq. (26) to include the effect of varying stress states on the
expression for the integrity of the shear modulus. To this end, it might seem appropriate to take c1 in (26) to
be an explicit function of stress, such that
ModulusðtÞ
Reference solid modulus

¼ 1� /
1þ ACfC

; ð27Þ
where the expression RðmÞ is replaced by AC for generality. This value AC should include the effect of friction
on the degradation of the moduli and the effect of varying stress states. Also, when all cracks are open (all

principal stresses are positive) AC should equal RðmÞ.
However, in the present development, the integrity I appears explicitly in the functional form for the

Helmholtz free energy. Moreover, the stress is determined by a derivative of the Helmholtz free energy.

Consequently, it is quite inconvenient for I to depend directly on stress. To avoid this difficulty, the integrity
is proposed in the form
IðDC;/Þ ¼
1� /
1þ DC

; ð28Þ
where DC is a new history-dependent variable which represents a measure of damage in the material due to
crack formation. Specifically, DC is determined by integrating the evolution equation
_DDC ¼ AC _ffC: ð29Þ
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Since the crack density fC can only increase, it follows that the damage variable DC can only increase in
response to crack nucleation and growth. When AC is a constant, then (29) integrates to obtain common
results like (27). However, the evolution Eq. (29) has the advantage that AC can be an arbitrary unitless
nonnegative function of stress without complicating the functional form of the Helmholtz free energy. This
means that AC can be used to model the dependence of the integrity I on the history of stress. Moreover, the
expression (28) for the integrity has the physical property that it tends to increase when porosity /
decreases.

The expression for AC in the general case is motivated by first considering two simple cases where I and
AC can be determined analytically in closed form from linear elasticity:

Case 1: All cracks are open (i.e. all principal stresses are positive). Using the expression (Keer, 1966;

Sneddon, 1969)
uN ¼ 4ð1� m2Þ
pE

rN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2

p
; ð30aÞ
for the normal displacement, and the expression (Segedin, 1950; Keer, 1966)
uT ¼ 4ð1� mÞ
pEð2� mÞ rT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2

p
; ð30bÞ
for the tangential displacement, it follows that Eq. (6.6.14a) in Nemat-Nasser and Hori (1993) can be

written in the form of their Eq. (6.6.14c) such that
I ¼ l
l0

¼ 1

1þ f 32ð1�mÞð5�mÞ
45ð2�mÞ

h i ; ð31Þ
where f is defined as in their Eq. (6.6.10a) by
f �
Z
a3wa da ¼

p
2
n�aa3 ¼ p

2
fC: ð32Þ
The factor p=2, which is the only difference between the value of f in (32) and its value in Eq. (6.6.10d) in
Nemat-Nasser and Hori (1993), is due solely to the different crack distribution function wa used here.
Consequently, the expression (28) for zero porosity (/ ¼ 0) will give the same results as (31) if AC in (29) is
specified by the constant
A1C ¼ p
2

32ð5� mÞð1� mÞ
45ð2� mÞ

� 	
: ð33Þ
Case 2: All cracks are closed (i.e. all principal stresses are negative) and friction between the crack faces

is neglected. In this case, the same procedure is followed as described in Case 1. However, the normal

displacement vanishes (uN ¼ 0), and the tangential displacement is given by Segedin (1950)
uT ¼ 8ð1� m2Þ
pEð2� mÞ rT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2

p
; ð34Þ
which yields the result that
I ¼ l
l0

¼ 1

1þ f 96ð1�mÞ
45ð2�mÞ

h i : ð35Þ
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As in Case 1, the expression (28) for zero porosity (/ ¼ 0) gives the same result as (35) if AC in (29) is
specified by the constant
A2C ¼ p
2

96ð1� mÞ
45ð2� mÞ

� 	
: ð36Þ
General Case: For a general state of stress the response of the solid is not so simple since for some crack

orientations rN > 0 and the crack is open, whereas for other orientations rN6 0 and the crack is closed.

Moreover, the influence of friction on the tangential displacement should be included. To describe this

more complicated situation it is convenient to recall that the principle stresses ri can be ordered
(r1 P r2 P r3) so that the normal stress r ¼ ðr1 þ r3Þ=2 and the shear stress s ¼ ðr1 � r3Þ=2 act on the
plane of maximum shear stress. Also, it is convenient to introduce the auxiliary variables n1 and n2 by the
expressions
n1 ¼
h�r3i

hr1i þ h�r3i
; 06 n16 1; ð37a; bÞ

n2 ¼
hs � fCh�rii

ss þ hs � fCh�rii ; 06 n26 1; ð37c; dÞ
where ss is a positive material constant. Then the functional form for AC for the General Case is proposed
by
AC ¼ ð1� n1ÞA1C þ n1n2A
2
C: ð38Þ
This function has the properties that it includes the limiting Case 1 (AC ¼ A1C) when all cracks are open
(r3 > 0, with n1 ¼ 0) and the limiting Case 2 (AC ¼ A2C) when all cracks are closed (r1 < 0 with n1 ¼ 1) with
near full slip occurring ½s � fCh�ri� � ss. It also includes the case of no slip (AC ¼ 0) when all cracks are
closed (r1 < 0, with n1 ¼ 1) and the shear stress is below the slip threshold ½s < fCh�ri�.
4. Porosity

In many constitutive models, a RVE dv of brittle material in the present configuration (at time t) is
decomposed into a solid part whose volume is dvs and a pore volume dvp, such that
dv ¼ dvs þ dvp; dV ¼ dVS þ dVP; ð39a; bÞ
where dV , dVS, dVP are the values of dv, dvs, dvp in a fixed-reference configuration, and the indexes s,
p denote the solid and pores, respectively. The porosity / and its reference value U are then defined by
/ ¼ dvp
dv

; U ¼ dVP
dV

: ð40a; bÞ
The relative volume is a nondimensional expression that describes the ratio between the volume of the RVE

in the present configuration and its volume in the reference configuration. Thus, for the total volume and

for the solid part, it follows that
J ¼ dv
dV

; Js ¼
dvs
dVS

; q0 ¼ ð1� UÞqs0; q ¼ ð1� /Þqs; ð41a–dÞ
where q is the density in the present configuration, qs is the solid density in the present configuration, qs0 is
the solid density in the reference configuration, and use has been made of the conservation of mass equation
ðqJ ¼ q0Þ.
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Next, with the help of Eqs. (40) and (41) it can be shown that
Js ¼
1� /
1� U

J : ð42Þ
Moreover, since the total relative volume J is determined by the evolution equation
_JJ ¼ JðD 	 IÞ; ð43Þ
it follows that the solid relative volume Js is determined by
_JJs ¼ Js ðD 	 IÞ
�

� 1

1� /
_//

	
: ð44Þ
The continuum model assumes that stresses are uniform throughout the RVE. This assumption ignores the

effect of stress concentrations near pores in the solid matrix and seems to predict an elastic response that is

too stiff. To remedy this problem, the added elastic compressibility observed in the porous material is

modeled (following Rubin et al., 1996), by proposing a function for the porosity / such that the total
porosity is
/ ¼ /̂/ðJ ; h;/u;DCÞ: ð45Þ
Here, DC is the crack damage parameter that was defined in Section 3, /u is the porosity of the material in
the unloaded state (h ¼ h0, T ¼ 0), which is calculated by integrating an evolution equation, and the
corresponding value of the total relative volume J in the unloaded state is denoted by Ju, using Eq. (42)
[with Js ¼ 1 for / ¼ /u and J ¼ Ju]
Ju ¼
1� U
1� /u

: ð46Þ
Differentiating the porosity function / with respect to time yields
_// ¼ o/̂/
oJ

_JJ þ o/̂/
oh

_hh þ o/̂/
o/u

_//u þ
o/̂/
oDC

_DDC: ð47Þ
For expanded states ðJ > JuÞ, the value of porosity /sðJ ; hÞ associated with zero pressure is given by
/sðJ ; hÞ ¼ 1�
1� U
J

� �
FsðhÞ: ð48Þ
Here FsðhÞ is the value of the relative volume of the solid Js that causes the part of the pressure ps1ðJs; hÞ (see
Eq. (77)) associated with changes of density and temperature to vanish.

It is assumed that the solid matrix is rather brittle so that it cannot sustain a significant negative value of

pressure without creating substantial increase in porosity. Thus, it is expected that in expanded states

ðJ > JuÞ the value of the solid relative volume Js will remain close to the value of FsðhÞ as the material
dilates. To model both compressed and expanded states, the functional form for the porosity is specified as
/̂/ðJ ; h;/u;DCÞ ¼ /ð/u;/sÞ ¼
/u for /u P /s
/s � btsð1� /sÞ tanh ð/s�/uÞ

bt
0
ð1�/sÞ

h i
for /u < /s

( )
; ð49a; bÞ

bts ¼
1

1þ DC
bt0: ð49cÞ
Here, bt0 is a material constant to be found through calibration and the value of b
t
s decreases as cracks grow

and nucleate.
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4.1. Evolution of the unloaded porosity

The porosity / is determined by (49) which depends on the current material state being compressed (49a)
or expanded (49b), according to the relative values of the two porosity variables /s and /u. In the following,
it is convenient to define the minimum value /minu of /u for all time by
/minu ¼Min½/u�: ð50Þ
Sometimes the evolution equations for porosity are formulated in terms of compaction and dilation sur-

faces, which remain zero during compaction or dilation, respectively. However, since the dependence of the
pressure on the porosity can be quite nonlinear, these equations are ‘‘stiff’’ and the iterative procedures used

to solve them can cause numerical instabilities in the computer code. To eliminate most of these numerical

difficulties, the constitutive equations for the unloaded porosity /u are formulated as rate-independent
evolution equations of the forms

For ðD 	 IÞ < 0:
_//u ¼

f3ðpÞðD 	 IÞ for p > pcrush
1� U
J

ðD 	 IÞHð/u � /minu Þ for pcrush P pP 0

0 for p < 0

8>><
>>:

9>>=
>>; ð51a–cÞ
and for ðD 	 IÞP 0:
_//u ¼
0 for p > �pd
C3h/s � /uiðD 	 IÞ for p6 � pd


 �
; ð52a; bÞ
where HðxÞ is the Heavyside function defined by
HðxÞ ¼ 0 for x6 0; HðxÞ ¼ 1 for x > 0: ð53Þ
Here pcrush is a threshold pressure to begin pore collapse in compaction, C3 is a material parameter to be
determined, and pd is a threshold magnitude of the tensile pressure at the onset of unloaded porosity growth
in dilation, which is degraded by loss of integrity
pd ¼ p0dI : ð54Þ
Also, f3ðpÞ is given by
f3ðpÞ ¼ C1
p � pcrush
pcrush

� �"
þ C2

p � pcrush
pcrush

� �2#
; ð55Þ
where C1, C2 are material constants to be determined.
It is obvious that the pressure cannot be the sole measure used to define the domains for porous

compaction ð _//u < 0Þ and porous dilation ð _//u > 0Þ. For example, for a fixed value of pressure p > pcrush,
porous compaction (51a) occurs if the material is being compressed ðD 	 I < 0Þ, whereas /u remains con-
stant (52a) if the material is being expanded ðD 	 I > 0Þ. Porous dilation also occurs during expansion with
negative pressure (52b) as voids grow and gaps form between fragments of material. During recompression

from this dilated state, the gaps are closed with negligible increase in pressure since (51b) causes Js to
remain constant.
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5. Constitutive equations for the intact material

Before developing a set of constitutive equations for a material full of cracks and pores, it is convenient

to postulate the HFE for a ‘‘virgin’’ intact material, following the work of Rubin et al. (1996). The subscript
s in any variable refers to the solid constituent in a composite material, which in this case is the only

constituent
wðJs; h; a1Þ ¼ ws1ðJs; hÞ þ w0
sðJs; h; a1Þ; ð56aÞ
qs0ws1ðJs; hÞ ¼ qs0Cv ðh
�

� h0Þ � h ln
h
h0

� �	
� ðh � h0Þf1ðJsÞ þ f2ðJsÞ; ð56bÞ
qs0w
0
sðJs; h; a1Þ ¼ 1

2
l̂lsðJs; hÞða1 � 3Þ; ð56cÞ
where h0 is the reference temperature and lsðJs; hÞ is the shear modulus of the solid which depends on the
relative volume and the temperature of the solid (e.g. Steinberg, 1991).

The first part ws1 of the HFE characterizes the response to dilatational deformations and is a function of
Js and h only. In this expression, Cv is the specific heat at constant volume and distortional deformation
(which can be temperature dependent but is taken here to be constant) and f1; f2 are functions of Js to be
determined later.

The second part w0
s of the HFE characterizes the response of the material to distortional deformation.

The symmetric tensor B0
e is a pure measure of elastic distortional deformation (Rubin and Attia, 1996)

which is determined by the evolution equation
_BB0
e ¼ LB0

e þ B0
eL

T � 2
3
ðD 	 IÞB0

e � C~AA; det½B0
e� ¼ 1; ð57a; bÞ
where
~AA ¼ B0
e �

3

B0�1
e 	 I

" #
I: ð58Þ
The symmetric tensor ~AA characterizes the relaxation effects of plasticity on the evolution of elastic

distortional deformation, and the function C is a nonnegative function determined using a consistency

condition for rate-independent plasticity (Rubin and Attia, 1996).

The scalar a1 is one of the two independent nontrivial invariants of the elastic distortional deformation
B0
e, which can be written as
a1 ¼ B0
e 	 I and a2 ¼ B0

e 	 B0
e: ð59Þ
Here, for simplicity, the Helmholtz free energy is taken to be independent of a2. Also, the time derivative of
a1 is given by
_aa1 ¼ 2 B0
e

h
� 1
3
ðB0

e 	 IÞI
i
	D� CðI 	 ~AAÞ ð60Þ
For the solid material with no pores, w ¼ ws and / ¼ U ¼ 0, so that with the help of (41), (42), (44), (56)
and (60), the reduced balance of energy Eq. (8) can be written in the form
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qs0g

"
� qs0Cv lnðh=h0Þ � f1ðJsÞ þ

1

2

ol̂lsðJs; hÞ
oh

ða1 � 3Þ
#
_hh þ

(
� JsTþ Js

"
� ðh � h0Þ

df1
dJs

þ df2
dJs

þ 1
2

ol̂lsðJs; hÞ
oJs

ða1 � 3Þ
#
Iþ l̂lsðJs; hÞ B0

e

�
� 1
3
ðB0

e 	 IÞI
	)

	Dþ qs0hn0
�

� 1
2

l̂lsðJs; hÞC~AA 	 I
	
¼ 0

ð61Þ
Now, within the context of the thermodynamic developments of Green and Naghdi (1977, 1978), the

constitutive equations must be restricted so that Eq. (61) is satisfied for all thermomechanical processes.

For elastic–plastic solids of the type considered in this section, the necessary and sufficient conditions for

this to be satisfied yield the following constitutive equations. The specific entropy is given by
g ¼ gs ¼ � ows
oh

¼ gs1ðJs; hÞ þ g0
sðJs; hÞ; ð62aÞ

gs1 ¼ Cv ln
h
h0

� �
þ 1

qs0
f1ðJsÞ; g0

s ¼ � 1

2qs0

ol̂ls
oh

ða1 � 3Þ ð62b; cÞ
and the specific entropy gs vanishes in the reference configuration ðJs ¼ 1; h ¼ h0;B
0
e ¼ IÞ. The specific

internal energy es is given by
e ¼ es ¼ ðŵws þ hĝgsÞ ¼ es1 þ e0s; ð63aÞ

es1 ¼ Cvðh � h0Þ þ
h0
qs0

f1ðJsÞ þ
1

qs0
f2ðJsÞ; ð63bÞ

e0s ¼
1

2qs0
l̂ls

"
� h

ol̂ls
oh

#
ða1 � 3Þ: ð63cÞ
The rate of dissipation due to distortional plastic deformation is given by
qs0hn0 ¼ qs0hn0
d ¼ 1

2
l̂lsðJs; hÞCðI 	 ~AAÞ; ð64Þ
and the Cauchy stress separates into a pressure p and a deviatoric part T0, such that
T ¼ �pIþ T0; T0 	 I ¼ 0; ð65a; bÞ
where for the material under consideration
T ¼ Ts ¼ �psIþ T0
s; ð66aÞ

T0 ¼ T0
s ¼

l̂lsðJs; hÞ
Js

B0
e

�
� 1
3
ðB0

e 	 IÞI
	
; ð66bÞ

p ¼ ps ¼ �qs0
ows
oJs

¼ ps1ðJs; hÞ þ p0sðJs; h; a1Þ; ð66cÞ

ps1 ¼ ðh � h0Þ
df1ðJsÞ
dJs

� df2ðJsÞ
dJs

; p0sðJs; hÞ ¼ � 1
2

ol̂ls
oJs

ða1 � 3Þ: ð66d; eÞ
In these constitutive equations, the parts fws1; gs1; es1; ps1g characterize the thermomechanical response to
dilatational deformation, whereas the other parts include the effects of distortional elastic deformation.
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Many constitutive models for shock waves assume that the pressure is determined by a Mie–Gr€uuneisen
equation of state. For such models, it has been assumed (Rubin, 1986) that ps1 is related to es1 by the
formula
ps1 ¼ psHðJsÞ þ qs0
csðJsÞ
Js

½es1 � esHðJsÞ�; ð67Þ
where cðJsÞ is the Gr€uuneisen gamma, which controls the temperature dependence of the pressure, psH and
esH are the pressure and the internal energy associated with the Hugoniot of the solid material
psHðJsÞ ¼ qs0U
2
s ð1� JsÞ; ð68aÞ

esHðJsÞ ¼
psHðJsÞð1� JsÞ

2qs0
: ð68bÞ
Us is the shock velocity, and cðJsÞ is given by

csðJsÞ ¼ c0Js; ð69Þ
which is a common assumption in many shock-wave codes. Also, Us is taken in the form
Us ¼

C0
1� S1ð1� JsÞ � S2ð1� JsÞ2 � S3ð1� JsÞ3

for Js6 1

C0
½1� ðcs0=2Þð1� JsÞ�1=2

for Js > 1

8>>><
>>>:

9>>>=
>>>;
; ð70Þ
where c0, S1, S2, S3 are material constants.
Moreover, using Rubin (1986) it can be shown that the constitutive relations (Eqs. (62)–(66) are con-

sistent with the Mie–Gr€uuneisen form (Eq. (67)), provided that f1 and f2 satisfy the differential equations
df1ðJsÞ
dJs

¼ qs0Cv
csðJsÞ
Js

; ð71aÞ

df2ðJsÞ
dJs

þ csðJsÞ
Js

f2ðJsÞ ¼ �psHðJsÞ þ qs0
csðJsÞ
Js

esHðJsÞ � h0
csðJsÞ
Js

f1ðJsÞ: ð71bÞ
Substituting Eqs. (68a,b) into Eqs. (71a,b) and using the conditions that
f1 ¼ 0; f2 ¼ 0;
df2
dJs

¼ 0 for Js ¼ 1 ð72a–cÞ
the solution of (71a,b) can be represented in the forms
f1ðJsÞ ¼ �qs0Cvc0ð1� JsÞ; ð73aÞ

f2ðJsÞ ¼ e�c0Js

Z Js

1:0

ec0x½�psHðxÞ þ qs0c0esHðxÞ � h0c0f1ðxÞ�dx: ð73bÞ
Here, the function f2 is determined numerically and values are stored in a table for future use.
Next, the function FsðhÞ is defined which is the value of the relative volume of the solid Js that will cause

the pressure ps1ðJs; hÞ in Eq. (66d) to vanish, so that

ps1ðJs; hÞ ¼ 0 when Js ¼ FsðhÞ: ð74Þ
Also, it is assumed that Fsðh0Þ ¼ 1 in the reference configuration, which is stress free, with Js ¼ 1. To find
the expression for ps1ðJs; hÞ, Eq. (63b) is solved for ðh � h0Þ
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ðh � h0Þ ¼
1

qs0Cv
½qs0es1 � h0f1ðJsÞ � f2ðJsÞ� ð75Þ
and the result is substituted into Eq. (66d) to yield
ps1 ¼
1

qs0Cv
½qs0es1 � h0f1ðJsÞ � f2ðJsÞ�

df1
dJs

� df2
dJs

: ð76Þ
Thus, with the help of Eq. (67), the pressure in the solid takes the form
ps1ðJs; hÞ ¼ qs0c0 Cvðh
�

� h0Þ þ
h0
qs0

f1 þ
1

qs0
f2 � esHðJsÞ

	
þ psHðJsÞ: ð77Þ
For a brittle material, the value of Js is always close to 1.0, since the material cannot sustain significant
tensile stress. This fact is used to simplify Eq. (77), by using a Taylor expansion
ps1ðJs; hÞ ¼ ps1ð1; hÞ þ
ops1
oJs

ð1; hÞðJs � 1Þ þ 	 	 	 ; ð78Þ
ps1ðJs; hÞ ¼ c0qs0Cvðh � h0Þ � ½qs0C20 � c20qs0Cvh0�ðJs � 1Þ þ 	 	 	 ð79Þ
Then, substituting Eq. (74) into Eq. (79) yields
0 ffi c0qs0Cvðh � h0Þ � ðqs0C20 � c20qs0Cvh0Þ½FsðhÞ � 1�; ð80Þ
which can be used to obtain the result that
FsðhÞ ffi 1þ Beqvðh � h0Þ; Beqv ¼
c0qs0Cv

qs0C
2
0 � c20qs0Cvh0

: ð81a; bÞ
The coefficient Beqv is very small (on the order of a few hundredths). Consequently, unless the temperature
of the solid is very high, FsðhÞ remains close to unity.
6. Constitutive equations for cracked and porous material

To model the response of a fractured porous material it is assumed that the HFE w is related to the
functional form (56) of ws for the nonporous solid. Here, it is of interest to modify the form (56) slightly by
including the degradation of the shear modulus due to crack growth and nucleation. Therefore, for the

present model, w is proposed in the form
q0wðJs; h; a1;DC;wCÞ

¼ ð1� UÞ qs0Cv ðh
�(

� h0Þ � h ln
h
h0

� �	
� ðh � h0Þf1ðJsÞ þ f2ðJsÞ þ

1

2

l̂lsðJs; hÞ
ð1þ DCÞ

ða1 � 3Þ
)
:

ð82Þ
In order to develop the restrictions on the constitutive equations for this fractured porous material, it is
convenient to use the expressions (41), (42), (44), (47) and (60)–(62) to determine the derivative of the

expression (82) for the HFE. This result can be used to rewrite the balance of energy (8) in the form
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q0g

"
� q0g

c
s þ Jpcs

o/̂/
oh

#
_hh þ J

(
� 1

"
� / � J

o/̂/
oJ

#
pcsIþ

1� /
1þ DC

T0
s � T̂T

)
	D

þq0hn0 � ð1� UÞ
2

l̂lsðJs; hÞ
1þ DC

CðI 	 ~AAÞ þ Jpcs
o/̂/
o/u

_//u þ Jpcs
o/̂/
oDC

"
� ð1� UÞ
2ð1þ DCÞ

l̂lsðJs; hÞ
1þ DC

ða1 � 3Þ
#
_DDC ¼ 0;

ð83Þ

where the following auxiliary parameters have been defined for convenience
gcs ¼ gs1 þ
1

1þ DC
g0
s; pcs ¼ ps1 þ

1

1þ DC
p0s: ð84Þ
It then follows that the constitutive equations
q0g ¼ ð1� UÞqs0gcs � Jpcs
o/̂/
oh

; ð85aÞ

p̂p ¼ pcs 1

"
� / � J

o/̂/
oJ

#
; T0 ¼ 1� /

1þ DC
T0
s ¼ IT0

s; ð85b; cÞ

n0 ¼ n0
d þ n0

/ þ n0
C; ð85dÞ

q0hn0
d ¼

1

2

J
Js
Il̂lsðJs; hÞCðI 	 ~AAÞ; ð85eÞ

q0hn0
/ ¼ �Jpcs

o/̂/
o/u

_//u; ð85fÞ

q0hn0
C ¼

"
� Jpcs

o/̂/
oDC

þ 1

2ð1þ DCÞ
J
Js
IlsðJs; hÞða1 � 3Þ

#
_DDC; ð85gÞ
represent sufficient conditions for the energy Eq. (8) to be satisfied for all thermomechanical processes. In

these constitutive equations the expression (85e) for n0
d has been modified relative to (64) to include the

effect of the loss of integrity due to crack growth and nucleation. Also, the specific internal energy e of the
fractured porous material is given by
e ¼ w þ hg: ð86Þ

Thus, with the help of (62), (63) and (82) it can be shown that
q0e ¼ q0Cvðh � h0Þ þ ð1� UÞðh0f1 þ f2Þ þ
ð1� UÞ
2ð1þ DCÞ

ls

�
� h

ols
oh

	
ða1 � 3Þ � Jpcsh

o/̂/
oh

: ð87Þ
Also, it can be seen from (66b) and (85c) that the effective shear modulus is given by
l ¼ I
l̂ls
Js
: ð88Þ
The statement (10) of the second law of thermodynamics requires the material dissipation n0 to be

nonnegative. Although, only the sum (85d) need be nonnegative, it will presently be shown that under most
situations each of the terms n0

d, n
0
/ and n0

C is nonnegative by itself. In this regard, it follows directly from the

work in Rubin et al. (2000) that the terms n0
d and (o/̂/=o/u) are each nonnegative, and that p

c
s has the same
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sign as the total pressure p. Thus, it follows from the evolution equations for the unloaded porosity /u that
for nonnegative pressure, /u either decreases (51a,b) or remains constant (52a). Similarly, for negative
pressure, /u either remains constant ((51c), (52a)), or increases (52b). This means that the dissipation term
n0

/ is nonnegative.
Furthermore, with regard to the term n0

C, it follows from (49) that (o/̂/=oDC) vanishes for /u P /s
(corresponding to nonnegative pressure ps1) and that it is nonnegative for /u < /s (corresponding to
negative pressure ps1). Moreover, since a1 P 3 and the shear modulus is usually a decreasing function of Js
(i.e. an increasing function of pressure) it follows that the term p0s is nonnegative. This means that states can
exist for which ps1 is negative but pcs is positive. For such states the term (�pcso/̂/=oDC) could be negative.
However, the term p0s is usually quite small (because it is essentially quadratic in elastic distortional strain)
so that under most situations the coefficient of _DDC will be nonnegative. Next, using the fact that _DDC is
nonnegative, the term n0

C is almost always nonnegative. This shows that the second law of thermodynamics
(10) is satisfied for almost all thermomechanical processes. In practice, the value of n0 is monitored to ensure

that it remains nonnegative during all calculations.

Flow of a damaged brittle ceramic material is different from metal plasticity, which is associated with

dislocation motion. Instead, the damaged brittle material flows because the comminuted material has small

fragments that experience relative motion. Moreover, the effective yield strength Y (in uniaxial stress), is
expected to be influenced by pore compaction and fracture growth and nucleation. Consequently, the yield

strength is taken in the form
Y ¼ Y0 1

(
� A

ð/0u � /minu Þ
/0u

" #B)
I ; ð89Þ
where Y0 and /0u are the reference values of Y and /u, respectively, and A and B are material constants that
are determined by matching experimental data. In the present model, plasticity is taken to be rate-inde-

pendent and the deviatoric stress is limited by a yield function of the form
g ¼ re
Y

� 1; ð90Þ
where re is the Von Mises effective stress defined by
r2e ¼ 3
2
T0 	 T0: ð91Þ
Integration of the evolution Eq. (57a) is performed by using the method developed in Rubin and Attia

(1996) which is based on the radial return procedure introduced by Wilkins (1964).

The temperature in the RVE can be determined either by integrating the balance of entropy (1) to de-
termine a value for g, or by integrating the balance of energy (8) to determine a value for e. For shock-wave
calculations, the process is assumed to be adiabatic (r ¼ 0 and q ¼ 0) so that it is easiest to integrate the
balance of energy (8). Specifically, using the conservation of mass ðqJ ¼ q0Þ and assuming that e vanishes
in the initial state, it follows that
q0e ¼
Z
JðT 	DÞdt: ð92Þ
Once the values of (J ;/; a1;DC) have been obtained by integration, the value of temperature is determined
so as to satisfy the constitutive Eq. (87). For example, Eq. (87) can be rewritten in the form
h ¼ h0 þ q0e

(
þ JpCs

o/
oh

h � ð1� UÞ
2ð1þ D Þ l̂ls

"
� ol̂ls

oh
h

#
ða1 � 3Þ � ð1� UÞðh0f1 þ f2Þ

)
1

q C
: ð93Þ
C 0 v
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In general, since the temperature h appears on the right-hand side of (93), it is necessary to solve this
equation by iteration. However, for the shock-wave calculations considered here, the time step is small

enough that the temperature at the end of the time step (i.e. the left-hand side of Eq. (93)) can be

approximated by evaluating the right-hand side of (93) using the value of the temperature in the previous
time step.
7. Examples

The objective of this section is to demonstrate physical features of the constitutive model proposed in

this paper and to investigate the sensitivity of material parameters, calibrated to simulate the response of

the brittle material in the examples. The first two examples consider homogeneous deformations associated

with two representative loading histories. The last example considers a simulation of the inhomogeneous

dynamic response in a plate-impact experiment, where a copper plate impacts a ceramic target. For this last
Table 1

Material parameters for AD-85 alumina

Constant Equation Value Constant Equation Value

qs0 (Mg/m
3) (41c) 3.8 Cv (J/Kg/K) (56b) 9.21E)6

C0 (m/s) (70) 6630.0 h0 (K) (56b) 300

S1 (70) 0.88 c0 (69) 0.76

S2 (70) 1.0 KIC (GPa
ffiffiffiffi
m

p
) (13) 3.0E)6

S3 (70) 12.0 U (40b) 0.1

l0 (GPa) (13) 98 q0 (Mg/m
3) (41c) 3.42

m (13) 0.256

Table 2

Model parameters for AD-85 alumina (porosity)

Constant Equation Value

bt0 (49c) 0.032

C1 (55) 1.5

C2 (55) 3.2

C3 (52b) 7.0

pcrush (GPa) (51a) 2.8

pd (GPa) (52a) 0.2

Table 3

Model parameters for AD-85 alumina (fracture)

Constant Equation Value

fC (15b) 0.7

j1 (19a) 0.3

j2 (19a) 0.04

j3 (m�1) (20) 10

j4 (m�1) (21) 3.0E+7

j5 (21) 1.2

ss (GPa) (37c) 0.1



Table 4

Initial values (t ¼ 0) for the history-dependent parameters for AD-85 alumina
Constant Value

�aa0 (m) 3.0E)6
DC 0.0

n0 (m�3) 1.0E10

/0u 0.1

/minu 0.1
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example, a one-dimensional shock-wave code was modified to incorporate the proposed constitutive

equations, and the simulated results are compared with experimental data. The values of the material and

model parameters of the ceramic are summarized in Tables 1–3, and the initial values of the history-

dependent parameters are presented in Table 4. The material and model parameters remain the same for all
of these examples, except for the simulations in Figs. 10 and 11, where the sensitivity of changes in a single

parameter are explored.

In the following simulations, the expressions (13), (15a,b) and (19b) are calculated using a constant value

for Poisson�s ratio m. Also, for simplicity, the shear modulus of the solid is taken to be independent of the
pressure and the temperature, so that lsðJs; hÞ ¼ l0 and yielding is omitted.
7.1. Homogeneous deformations

The first two examples consider homogeneous uniaxial strain deformations. For these deformations, let

X and x be referred to the fixed rectangular Cartesian base vectors ei, and take the velocity gradient L, the

axial Lagrangian strain E33, and the dilatation J in the forms
x1 ¼ X1; x2 ¼ X2; x3 ¼ expðDutÞX3;
L ¼ Duðe3 � e3Þ; E33 ¼ 1

2
½expð2DutÞ � 1�; J ¼ expðDutÞ;

ð94Þ
where the symbol � denotes the tensor product and Du is the constant rate of expansion/compression in the
e3 direction, which in the following examples is taken to be Du ¼ �3000 s�1.
In the first example (Figs. 1–5, a), the material is compressed until the pressure in the RVE reaches 15

GPa. Then, the sign of the deformation rate is reversed and the RVE is expanded until the dilatation

reaches J ¼ 1:2. At this point, the deformation rate sign is reversed again and the RVE is recompressed
until gaps between the solid parts are closed. When the porosity vanishes in the RVE, compression con-

tinues until the pressure again reaches the value of 15 GPa.
Fig. 1. Pressure in the RVE: (a) compression first, (b) expansion first.



Fig. 2. Temperature in the RVE: (a) compression first, (b) expansion first.

Fig. 3. Porosity in the RVE: (a) compression first, (b) expansion first.

Fig. 4. Average crack radius in the RVE: (a) compression first, (b) expansion first.

Fig. 5. Number of cracks in the RVE: (a) compression first, (b) expansion first.
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In the second example (Figs. 1–5, b), loading starts with expansion until the dilatation reaches J ¼ 1:2.
At this point, the deformation rate sign is reversed and the RVE is compressed until gaps between the solid

parts are closed. When the porosity vanishes in the RVE, compression continues until the pressure reaches

the value of 15 GPa. Then, the deformation rate sign is again reversed and the RVE is expanded until the
dilatation reaches J ¼ 1:2.
The pressure response during these examples is shown in Fig. 1. Loading starts at point a, and the reader

can follow the changes in the pressure during all the sequential stages. In the first example (Fig. 1a), the

material behaves elastically until the pressure rises to pcrush, which is point b. Between points a and b, there is
no change in the unloaded porosity ( _//u ¼ 0). Above pcrush the pressure causes crushing of pores and the
porosity decreases. When point c is reached, all pores are crushed and the porosity vanishes. The pressure

continues to rise along the Hugoniot pressure curve up to 15 GPa at point d.

At point d, the sign of the deformation rate is reversed and the material is expanded. During unloading
there is no change in the unloaded porosity ( _//u ¼ 0) until the pressure becomes less than the threshold
pressure (�pd). After reaching a tensile pressure of about 2 GPa, the magnitude of the pressure in the tensile
phase decreases very rapidly and the material continues to dilate with negligible resistance until point f is

reached.

The pressure remains near zero during re-compaction, while gaps between fragments of the solid are

closed with negligible resistance. After point g is reached (/u ¼ /minu ), the pressure increases along the

Hugoniot curve. Note that the pressure curve from g to h (in Fig. 1a) does not quite follow the unloading

curve from d to e because of the increase in the temperature of the material (Fig. 2a).
The temperature behavior during the two examples is shown in Fig. 2. Loading starts at point a where

h ¼ h0 ¼ 300�ðKÞ and rises according to Eq. (93). Fig. 3 exhibits the porosity / and the response shown in
this figure indicates that the porosity / decreases with increased pressure. Figs. 4 and 5 exhibit the growth
of the crack radius and the number of cracks, respectively. The response shown in these figures indicates

that most of the growth occurs during the tensile phases.

The crack damage, shown in Fig. 6, is calculated by integrating the evolution Eq. (29). Thus, its value is

composed of the values of the crack radius and the number of cracks in the RVE. Note that fracture related

variables can only grow, as is shown in the previous three figures.
Fig. 7 shows the material integrity I . Note that the integrity in the present model is a function that

characterizes modulus degradation, being the ratio of the value of the instantaneous modulus in the present

configuration relative to the value of the nonporous solid modulus in the reference configuration (23). Thus,

at point a, the integrity in both examples is less than unity due to the initial porosity. From point a, the

integrity curves differ, depending on the loading procedure in each example. In Fig. 7a, the material un-

dergoes compaction and the material integrity is enhanced until point c is reached, while in Fig. 7b the

material is being dilated and its integrity degrades fast.
Fig. 6. Crack damage in the RVE: (a) compression first, (b) expansion first.



Fig. 7. Integrity of the RVE material: (a) compression first, (b) expansion first.

E. Bar-on et al. / International Journal of Solids and Structures 40 (2003) 4519–4548 4543
With regard to the pressure response in Fig. 1, it should be noted that the tensile phase (e–f) in Fig. 1a

appears to be more brittle (with a more rapid reduction in tensile pressure) than the tensile phase (a–b) in

Fig. 1b. The reason for this can be seen in Fig. 7, by examining the respective tensile phases of the first and

second examples. The main difference between these tensile responses is due to the fact that the integrity in

the first example drops faster and to a lower value during the tensile phase (e–f) than the integrity in the
second example (a–b).

7.2. AD-85 plate-impact experiment

The third example is of a planar-impact experiment, which was conducted at the University of Dayton

Research Institute (UDRI), and was used to demonstrate the RDG model (Rajendran et al., 1989, 1990;

Rajendran and Grove, 1992). In this experiment, a 2.5 mm thick copper flyer plate impacted an 8.8 mm

thick AD-85 target plate at a velocity of 570 m/s. The longitudinal stress was measured by a Manganin

stress-gauge at the interface between the target plate and the PMMA back-up plate. The material data for

the copper and the PMMA, which was used in the following simulation, are given in Table 5.
The material sample in the simulated plate-impact experiment was an AD-85 ceramic manufactured by

Coors (Holmquist et al., 1999). Shock-wave parameters were determined by matching Hugoniot measured

data from Gust and Royce (1971) and from Rosenberg and Yeshurun (1985) (see Fig. 8), and the values are

presented in Table 1. The thirteen model parameters, six related to porosity (Table 2) and seven to fracture

(Table 3) were calibrated to produce the best agreement with the measured axial stress (Fig. 9). Also, the

initial values of the history-dependent variables are summarized in Table 4. Fig. 9 shows that the calculated

axial stress almost coincides with the measured stress. It should be noted that in this example the stresses

are too low for the material to exhibit any yielding. Therefore, the material in the simulation was taken to
be elastic, so it was impossible to calibrate the initial yield stress Y0 and the two parameters A, B in Eq. (89).
Stress and particle velocity histories of shock waves in ceramic materials typically exhibit ramping above

the HEL (Hugoniot Elastic Limit) as shown in Fig. 9. Experimental evidence of this ramping phenomenon

can be found in the work of Gust and Royce (1971), and additional evidence for the effect of porosity on the

HEL stress has been given by Rosenberg (1991) and Longy and Cagnoux (1989). More recently, Bar-on

et al. (2001, 2002) have shown that even though the pore volume of high-grade ceramics is quite small, it is
Table 5

Material parameters for copper and PMMA

Material q0 (Mg/m
3) C0 (m/s) S1 l0 (GPa) Y0 (GPa)

Copper 8.939 3920 2.0 455 3.0

PMMA 1.185 3070 1.295 23.2 0.25



Fig. 8. Calibration of AD-85�s shock-parameters using Hugoniot measurements.

Fig. 9. Comparison of data from a plate-impact experiment with results predicted by the model.
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sufficient to cause this ramping. Consequently, within the context of the present model, this ramping is

characterized by the micro-mechanical mechanism of porous compaction.
7.3. Sensitivities of the material and model parameters

The values of the model parameters (Tables 3 and 4) used to simulate the experimental data (Fig. 9) were

determined by trial and error. Specifically, a number of preliminary simulations were performed to

determine the influence of these parameters on the wave profile. Figs. 10 and 11 exhibit the influence of the

model parameters associated with porosity (Table 2) and fracture (Table 3), respectively, as well as the
influence of the initial values /0u of /u and n0 of n. For each of the simulations in these figures only one



Fig. 10. Influence of the model parameters associated with porosity.
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model parameter was varied, with the remaining parameters being specified by the values given in Table 1–
3. Also, the solid lines in these curves use the value of the specific material parameter given in these tables

which best simulate the experimental data, as shown in Fig. 9.

From Fig. 10a it can be seen that threshold pressure pcrush controls the stress level at which porous
compaction begins. This parameter influences the ramping portion of the loading phase above the HEL as

well as the fracture portion of the release phase. Fig. 10b shows that the material response in this high

pressure shock-wave experiment is relatively insensitive to changes in the parameter pd, which controls the
spall strength. Consequently, for high pressure shock waves in ceramics, it can be assumed that porosity

starts to grow as soon as the pressure becomes negative (tension), and that pd ¼ 0. However, for the low
pressure response of ceramics the failure in tension will be more sensitive to the value of pd so that a
nonzero value of pd can be determined from the experimental data.

Fig. 10c and d explore the effects of the model parameters C1 and C2, which control porous compaction
and which appear in the function f3ðp; pcrushÞ in (51) and in (55). From these figures it can be seen that these
parameters influence both the loading and release phases of the wave profile. Fig. 10e shows that wave

profile is relatively insensitive to changes in the parameter C3, which controls porous dilation in (52a).



Fig. 11. Influence of the model parameters associated with fracture.
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The initial value /0u of the unloaded porosity /u is determined by the reference value q0 of the mass
density of the porous material and the theoretical reference value qs0 of the solid matrix material. However,
it is still of interest to explore the influence of this parameter on the wave profile. Fig. 10f shows that

changes in /0u influence the arrival time of the wave as well as the lower portion of the release phase.
Next, attention is turned to the model parameters discussed in Section 3 which control fracture. Note

from Fig. 11 that these parameters effect only the release phase of the wave profile. Specifically, it is recalled

that that the number of cracks n per unit volume in the RVE appears in the crack distribution function (Eq.
(11a)) and in the evolution Eq. (20) for crack nucleation due to the ‘‘branching’’ phenomenon. Fig. 11a

shows that when the initial number of cracks in the material (n0) is increased, the damage developed during
the release phase of the experiment is also increased. This damage is responsible for loss of material in-

tegrity which causes the curve that describes the stress transmitted to the PMMA to decrease with a milder

slope.

The coefficient of friction fC effects damage growth and nucleation when the normal stress acting on a
crack surface is compressive. Even though this parameter is specified to be a constant in this work, it

probably depends on other state variables, like pressure and maybe also on the percentage of the crushed

pores. Fig. 11b shows that this parameter significantly effects the magnitude of damage. More specifically,
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damage occurs when the release wave, reflected from the rear face of the projectile, causes the material

to lose integrity due to fracture under tensile stress. The common values found in the literature are around

0.7 (see Rajendran and Grove, 1992).

The next four material parameters considered, influence the rate equations characterizing fracture
mechanics. Specifically, the parameters j1 and j2 in Eq. (19a) control the rate of increase of the average
crack length �aa. The first parameter j1 multiplies the expression for crack growth-rate and the second para-
meter j2 is the exponent of the ratio between the critical energy release rate and the instantaneous energy
release rate. The effects of varying these material parameters are shown in Fig. 11c and d, respectively.

The parameter j3 in Eq. (20) multiplies the expression for the rate of crack nucleation due to branching,
and the parameter j4 in Eq. (21) multiplies the expression for crack nucleation rate due to the generation of
cracks while pores are crushed in compression. The effects of varying these material parameters are shown

in Fig. 11e and f, respectively. From these figures it can be seen that these material parameters effect the
material response by degrading the strength of the material as the release wave moves through the ceramic

plate. An increase in damage causes weakening of the ceramic which leads to a milder slope in the release

phase of the wave profile.

In general, it can be seen from Figs. 10 and 11 that the influences of most of the model parameters on the

wave profile are not uncoupled. This means that it is not possible to determine unique values for these

parameters without considering a series of different experiments. However, since the model parameters for

fracture effect only the release phase of the wave profile it is possible to first adjust the model parameters for

porosity to match the loading phase and then to adjust the model parameters for fracture to match the
release phase. This procedure leads to the excellent comparison between experiment and simulation shown

in Fig. 9.

In order to model the influence of load history on the crack propagation speed, and to enhance the

capability of the present model to simulate experiments with various boundary conditions, it may be

necessary to specify functional forms for the values of j1, j2, j3 and j4 which depend on state variables. In
particular, the values of these parameters may be different for states of tension and compression. However,

for the plate-impact experiment simulated in this work, it was sufficient to choose these parameters to be

constants.
8. Summary

The present work uses fracture mechanics criteria for penny-shaped cracks and phenomenological

equations for pores to develop a macroscopic constitutive model for simulating the response of brittle

materials. A functional form for the Helmholtz free energy is proposed and constitutive equations are

determined by satisfying the first law of thermodynamics. The examples indicate that the theoretical

predictions of the model are in excellent agreement with experimental data from a plate-impact test.
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